GENETICS 2019 OUR DNA IS CHANGING

YOU CAN'T CHOOSE YOUR GENES (YET) BUT TODAY YOU CAN CHOOSE WHAT WE DISCUSS

> William R Rooney MD SCOR

May, 2019

Opportunities Genetics Challenges

Important Concepts in Genetics

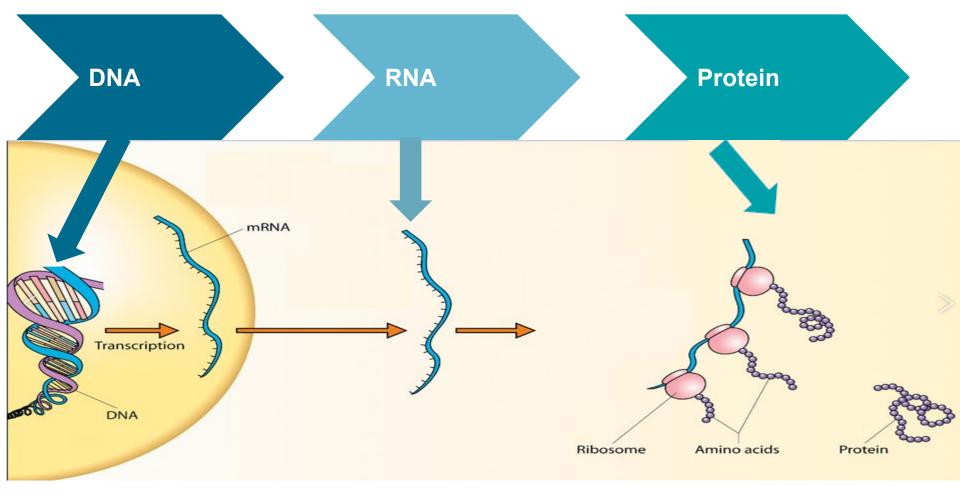
Genetic Structure and Disease

Direct-to-Consumer Genetic Testing

No need for clinicians. Just send in your DNA.

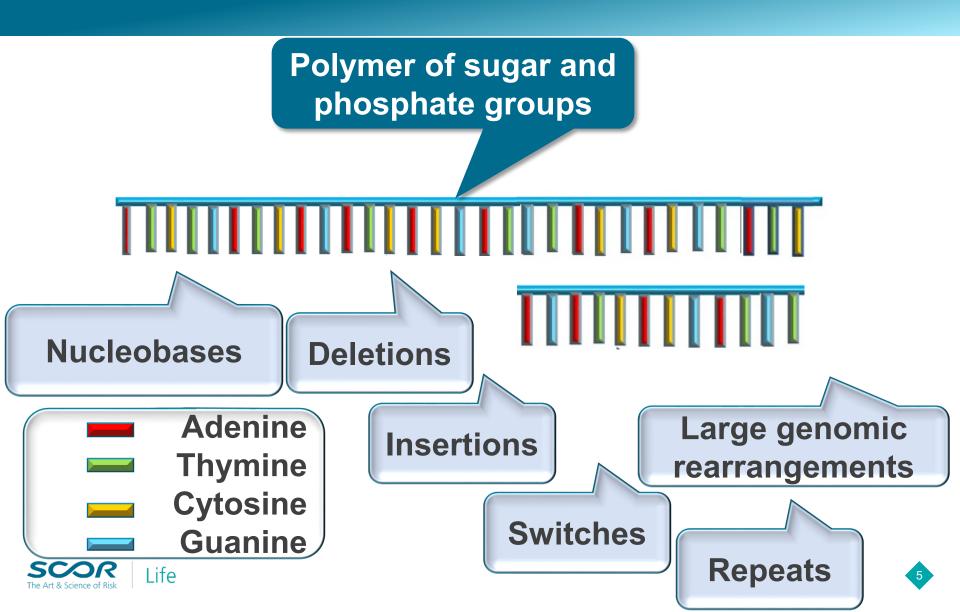
i lok i odi i resentat

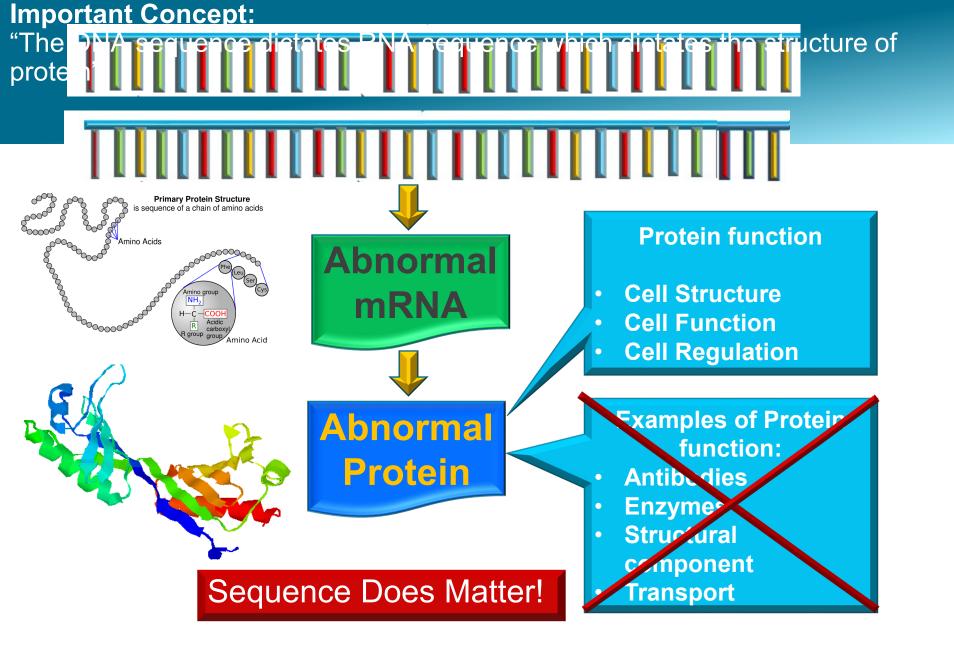
You choose the topic


$\langle \rangle$

Important Genetic Concepts

The Central Dogma





<u>https://en.wikipedia.org/wiki/Protein</u> Obtained 8/21/2018 using Bing's
 "free to modify, share, and use commercially" search engine

Sequence Matters

- 1) <u>https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Protein_primary_structure.svg/1280px-Protein_primary_structure.svg.png</u> Image downloaded 8/5/16 from Bing "free to modify, share, and use commercially
 - https://www.bing.com/images/search?q=protein+structure&view=detailv2&qft=+filterui%3alicense-L2_L3&adlt=strict&id=327BD63212E32BB7A857458B7357B1C1F3E7F31B&selectedIndex=11&ccid=Ft2uSk4j&simid=608047493385817479&thid=OIP.M16ddae4a4e23e52d43fc31b9b602833

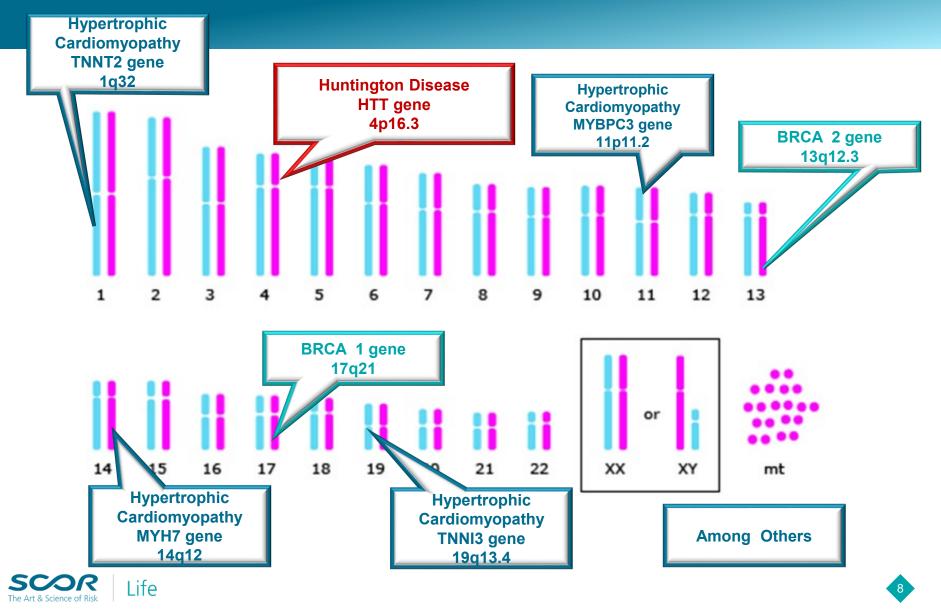
Human Genome Project

1990

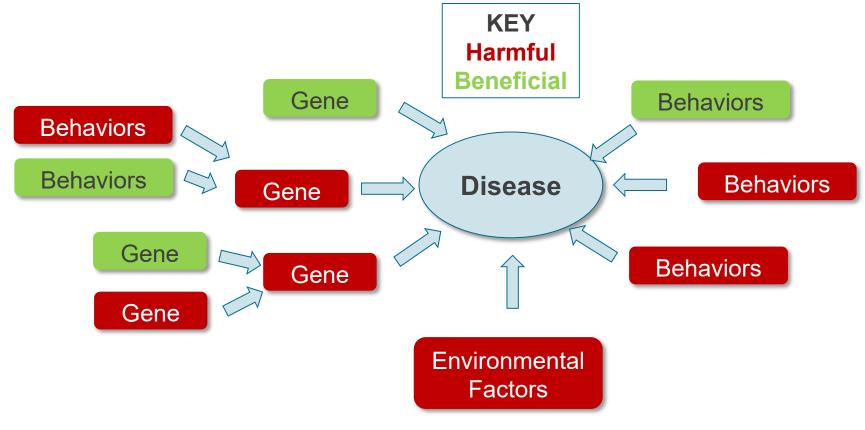
The NIH, the Dept.
of Energy, and an international team launched the Human Genome Project.
The goal was to sequence the human genome.

2003 Researchers completed the project

Cost for sequencing a human genome

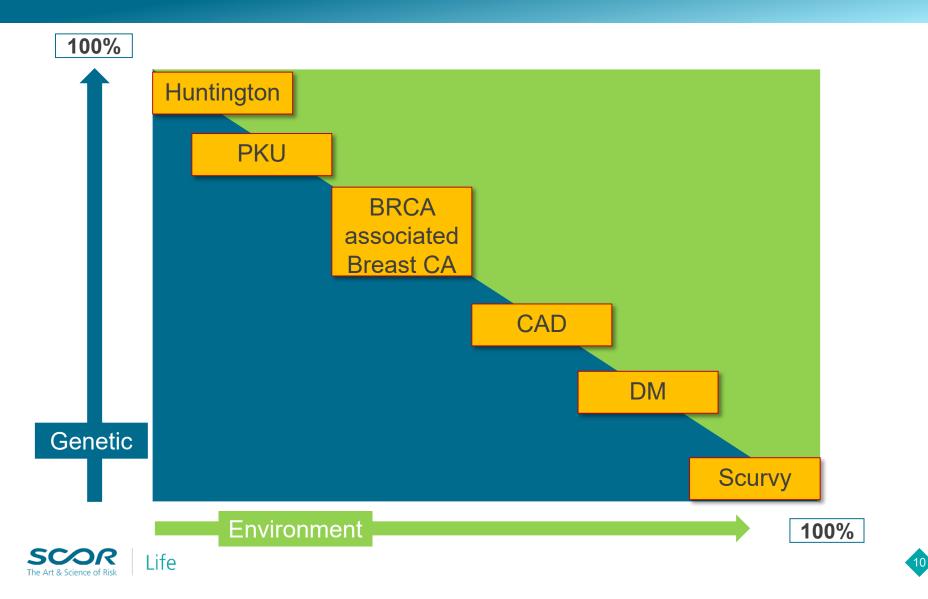

2004 ~\$28,800,000 2019 ~\$1,000

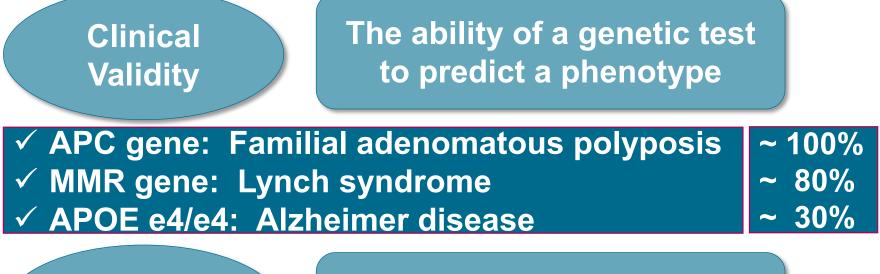
Topol, Eric Individualized Medicine from Prewomb to Tomb. Cell 157 March 27,2014


Examples of diseases with known gene locations

Concept

"Interaction of Many Factors"


Diseases can be a combo of one or more genes, one or more behaviors, and one or more environmental factors, with both good and harmful effects.



Concept

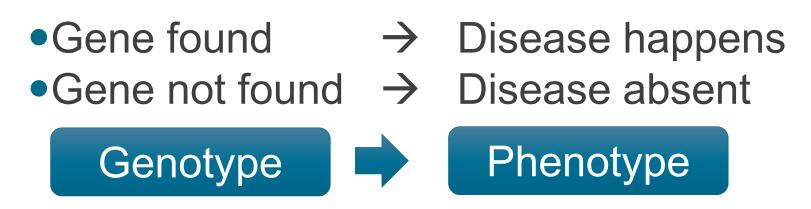
"Spectrum"

Concept: Clinical Validity and Clinical Utility

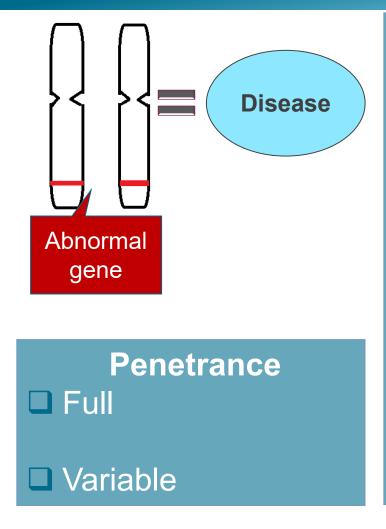
The impact of the genetic test on clinical care

✓ Huntington
 ✓ Lynch syndrome:
 ✓ BRCA

Clinical


Utility

Minimal Significant Significant


Concept: "Finding a mutated gene doesn't necessarily help"

 Ideally, this would be the case 100% of the time for predictive purposes. But....not so fast.

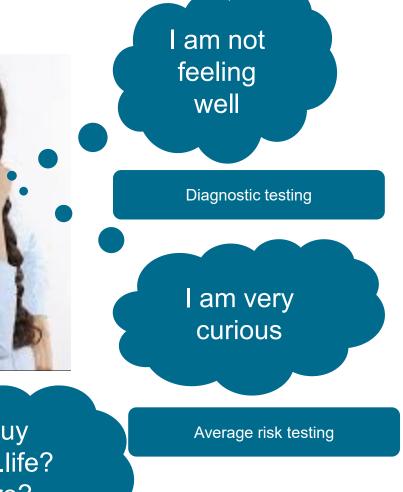
Important Concept: "Multiple variables influence the impact of genetic expression"

Variable expressivity

Age Mutation type Genetic heterogeneity Environmental exposure Parent-of-origin effects (i.e. Prader-Willi Syndrome) Sex-limited expression (i.e. male pattern baldness) Anticipation Mosaicism

Testing

I want to have a healthy baby


Carrier testing Prenatal testing Preimplantation testing

I know my family member has a disease, I wonder if I have it too

Predictive and pre-symptomatic testing

Art & Science of Bisk

Should I buy insurance....life? Critical care? Long term care?

14

Genetic Testing Statistics

- Genetic testing available for over 2,000 conditions
- Available in over 500 laboratories

The CDC

- Developed a Public Health Genomics website and classifies many genetic testing into 3 tiers. Tier 1 genomic applications are defined as "those having significant potential for positive impact on public health based on available evidence-based guidelines and recommendations". The first 3 conditions on the list (2 million Americans potentially have one of the three)
 - Hereditary Breast and Ovarian Cancer Syndrome
 - Lynch Syndrome
 - Familial hypercholesterolemia

The American College of Medical Genetics and Genomics (ACMG)
Named 59 genes which when a genetic sequence is abnormal "would result in a high likelihood of severe disease that is preventable if identified before symptoms occur".

Disease category	Syndrome	Gene(s)	
Cancer	Breast/ovarian cancer	BRCA1, BRCA2	
	Li-Fraumeni syndrome, Peutz-Jeghers syndrome; Juvenile polyposis, PTEN hamartoma syndrome	TP53, STK11, SMAD4*, BMPR1A*, PTEN	
	Lynch syndrome, familial adenomatous polyposis, MYH-associated polyposis	MLH1, MSH2, MSH6, PMS2, APC, MUTYH	
	Von Hippel Lindau syndrome; retinoblastoma, tuberous sclerosis, Wilms tumor	VHL, RB1, TSC1, TSC2, WT1	
	Multiple endocrine neoplasia 1 or 2; familial medullary thyroid cancer	MEN1, RET	
	Hereditary paraganglionoma- pheochromocytoma syndrome, neurofibromatosis type 2	SDHD, SDHAF2, SDHC, SDHB, NF2	
Cardiovascular disease	Hypertrophic or dilated cardiomyopathy	MYBPC3, MYH7, TNNT2, TNNI3, TPM1, MYL3, ACTC1, PRKAG2, GLA, MYL2, LMNA	
	Catacholamenergic polymorphic ventricular tachycardia, arrhythmogenic right ventricular cardiomyopathy, Romano-Ward Long QT syndromes, Brugada syndrome	RYR2, PKP2, DSP, DSC2, TMEM43, DSG2, KCNQ1, KCNH2, SCN5A	
	Familial hypercholesterolemia	LDLR, APOB, PCSK9	
Connective tissue	Ehlers Danlos syndrome	COL3A1	
or vascular integrity	Marfan syndrome, Loeys-Dietz syndrome, familial thoracic aortic aneurysms and dissections	FBN1, TGFBR1, TGFBR2, SMAD3, ACTA2, MYH11¶	
Malignant hyperthermia sensitivity		RYR1, CACNA15	
Metabolism	Wilson disease (copper metabolism)	ATP7B*	
	Ornithine transcarbamylase deficiency (urea cycle)	OTC*	

American College of Medical Genetics list of genes for which secondary findings should be disclosed

This list includes genes identified by the American College of Medical Genetics and Genomics (ACMG) as clinically actionable when known pathogenic (and, in some cases, expected pathogenic) variants are identified by whole genome or exome sequencing. Refer to UpToDate topics on genetic counseling and secondary findings from genomic testing for further details.

ACMG: American College of Medical Genetics and Genomics.

* Added in the 2016 revision (ACMG 2.0).

¶ MYLK was removed in the 2016 revision due to lack of an effective confirmatory test or intervention to improve outcomes.

Prepared with data from:

- Green RC, Berg JS, Grody WW, et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 2013; 15:565.
- Kalia SS, Adelman K, Bale SJ, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): A policy statement of the American College of Medical Genetics and Genomics. Genet Med 2017; 19:249.

Important Concept: "There are many genetic testing techniques"

Biochemical testing

Protein analysis/Enzyme assays/Analytes

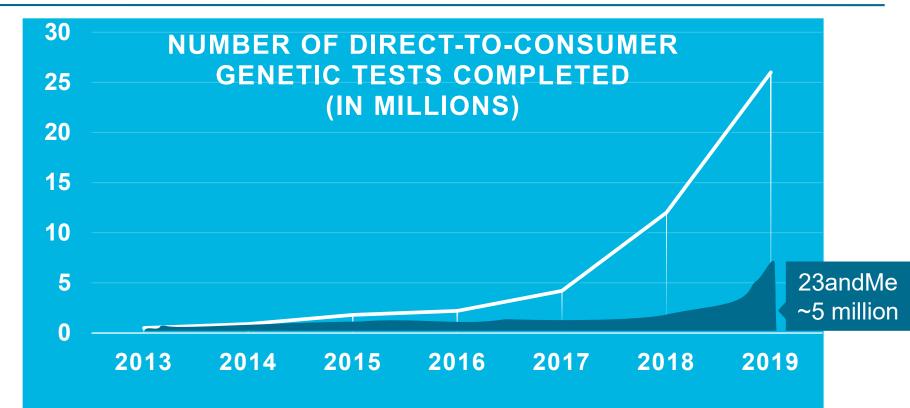
DNA analysis

- Real-time PCR
 Small number of genes tested
- High-density DNA array testing Analyze for 1,000,000 gene variants
- Highly efficient DNA sequencing techniques (next generation sequencing) Entire human genome

Important Concept: "There are many types of genetic testing"

Life

Diagnostic testing	Symptoms lead to testing	
Prenatal Testing	Offered to all pregnant women	
r renatar resting	Performed on all newborns (~4 million births per year)	
Newborn Testing	Offered to most couples seeking	
Carrier Testing	prenatal care ? Number done annually Done mostly for family members with strong FH or after tumor testing	
Predictive and pre-symptomatic testing		
Direct to Consumer Testing	5 million total thus far— Trending higher	
Preimplantation genetic Testing	Offered to most of the 78,000 babies born annually by IVF (7 million living in the United States)	
Pharmacogenomic Testing	 The FDA mentions use of pharmacogenomic testing for 250 meds Medicare, Medicaid and private insurance don't typically pay except in unusual conditions. 23 and Me FDA approved nowbut haven't offered the test yet. 	
Research Genetic Testing		



Direct-to-Consumer Genetic Testing

How many Direct to Consumer tests?

Ancestry and 23andMe

Multiple companies involved

(e.g. Family Tree DNA, My Heritage, Ancestry.com, 23andMe)

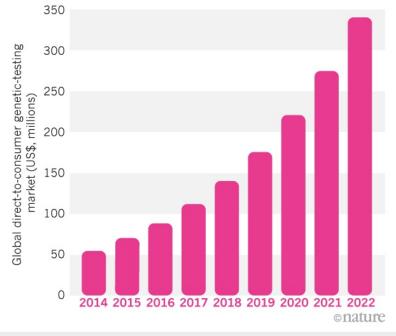
SCOR The Art & Science of Risk

1) https://www.technologyreview.com/s/610233/2017-was-the-year-consumer-dna-testing-blew-up/

Direct-to-Consumer Genetic Testing 23andMe

As of October 2018

- Does business in 50 countries
- Has >5 million customers


ife

 Allows raw data to be downloaded for use with external tools for further DNA analysis (e.g. XcodeLife, Genetic Genie)

Genotypes 640,000 SNP's using an Illumina Global Screening Array customized chip

GENE DRIVE

The direct-to-consumer genetic-testing industry is predicted to grow to US\$340 million in the next five years. This is still a small fraction of the overall market for DNA testing, which is expected to reach \$10 billion in that time.

Source: Credence Research; Grand View Research

Hayden, Erika 11 Oct 2017 The rise and fall and rise again of 23andMe. https://www.nature.com/news/the-rise-and-fall-and-rise-again-of-23andme-1.22801

As of January 2019 there were 44 reports

Examples

Bloom Syndrome	Agenesis of the Corpus Callosum with Peripheral Neuropathy	
Autosomal Recessive Polycystic Kidney Disease	Niemann-Pick Disease Type A	
Familial Mediterranean Fever	Limb-Girdle Muscular Dystrophy	
Cystic Fibrosis	Glycogen Storage Disease Type 1a and 1b	
Sickle Cell Anemia	Tay-Sachs Disease	

23andMe BRCA testing	S S S S S S S S S S S S S S S S S S S			
	23andMe tests for 3 variants			
BRCA1 gene185delAG	BRCA1 gene 5382insC 	BRCA2 gene6174delT		

Most BRCA mutations (~80%) in Ashkenazi Jews will be detected. This disorder is common in Ashkenazi Jews (~1 in 40)

There are >1,000 variants in the BRCA1 and BRCA2 genes now known to increase cancer risk

Most BRCA mutations (~90%) in the general population will be missed with this test.

Test results-Example

Age-Related Macular Degeneration	Variant detected, not likely at increased risk	>
Hereditary Hemochromatosis (HFE-Related)	Variant detected, not likely at increased risk	>
Alpha-1 Antitrypsin Deficiency	Variants not detected	>
BRCA1/BRCA2 (Selected Variants)	Variants not detected	>
Celiac Disease	Variants not detected	>
G6PD Deficiency	Variant not detected	>
Hereditary Thrombophilia	Variants not detected	>
Late-Onset Alzheimer's Disease	Variant not detected	>
Parkinson's Disease	Variants not detected	>

Test results-Example

	Variants Detected		View All Tested Markers
Marker Tested	Genotype*		Additional Information
A69S Gene: ARMS2 Marker: rs10490924	G Typical copy from one of your parents	T Variant copy from your other parent	 Biological explanation Typical vs. variant DNA sequence(s) Percent of 23andMe customers with variant
Test Interpretation		[5, 10, 11, 19, 23, 24, 25] ClinVar	
This report provides risk estimates for people of European descent. Estimates for other			

ethnicities are not currently available.

Test results-Example

Odds ratios

A "likelihood ratio" estimates how the test result affects the chances of a condition, compared to the chances of the condition prior to testing. In the table below, values greater than 1 mean that the chances of developing AMD are higher based on the test result. Values less than 1 mean that the chances are lower based on the test result. Values close to 1 mean that the chances of developing AMD have not changed significantly.

These values are calculated by 23andMe using data from Rivera et al. (2005).

Genotype	Likelihood ratio	95% confidence interval	
No variants detected	0.23	0.17 - 0.30	
One copy of Y402H variant	0.50	0.42 - 0.59	
One copy of A69S variant	0.67	0.51 - 0.88	
Two copies of Y402H variant	1.64	1.25 - 2.14	
Two copies of A69S variant	1.99	1.18 - 3.38	
One copy of Y402H and one copy of A69S variant	1.24	1.03 - 1.50	
One copy of Y402H and two copies of A69S variant	4.12	2.60 - 6.53	
Two copies of Y402H and one copy of A69S variant	4.49	3.18 - 6.33	26

Warnings and Limitations

- This test does not cover all variants that could cause this condition.*
- This test does not diagnose any health conditions.
- Share results with your healthcare professional for any medical purposes.
- If you are concerned about your results, consult with a healthcare professional.

Test results—Type 2 Diabetes

In 2019

23andMe started reporting on the genetic likelihood of developing Type 2 DM

23andMe developed the report based upon the FDA's guidelines for low-risk general wellness devices, products that promote a healthy lifestyle.

This report uses a polygenic risk score

https://www.wired.com/story/23andmes-new-diabetes-test-has-experts-asking-who-its-for/ dated 3/10/19. accessed 3/25/2019

Test results—Type 2 Diabetes—Example

Bill, your genetics are associated with a **typical likelihood** of developing type 2 diabetes.

Your genetic likelihood falls in the range that is considered typical. But your overall likelihood also depends on factors like weight, diet, and exercise. This means it's important to maintain a healthy lifestyle.

H
This report does not
diagnose type 2
diabetes. It also does
not provide
information about or
diagnose other forms
of diabetes.

ife

ull

The likelihood of developing type 2 diabetes also depends on **other factors**, including age, weight, ethnicity, and family

history.

This report **does not** account for every possible genetic variant that could affect your likelihood of developing type 2 diabetes. This report is based on a genetic model created using data from 23andMe research participants and has not been clinically validated.

23andMe Summary slide

Advantages

Disadvantages

Identifies disease risk early

Identifies disease carrier conditions

Sparks interest in educating oneself

Relieves some anxiety when testing is negative

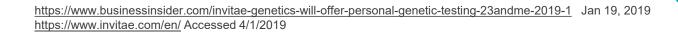
Misreading the test results

Misunderstanding the completeness of the testing

Misinterpreting the degree of reassurance in some cases which could lead to decreased surveillance

DIAGNOSTIC GENETIC TESTING can help identify

PROACTIVE GENETIC TESTING helps healthy


REPRODUCTIVE GENETIC TESTING helps make

- Simple, convenient, and affordable testing options
- Rapid answers in 10-21 calendar days, on average, for single-gene and panel tests and 6-8 weeks for exome tests
- Expert analysis for clear understanding
- Testing at no charge to clarify risks for your blood relatives if you test positive

Since its first test launched five years ago, Invitae has sequenced the genes of more than half a million patients.

Patients will be able to order genetic tests online through a clinician by this summer, George said. Nearly any test on Invitae's clinical menu will be available this way, making Invitae one of the first companies to offer wider access to clinical testing for an array of conditions and inherited health risks.

CARDIOLOGY	METABOLIC DISORDERS AND NEWBORN SCREENING
DERMATOLOGY	NEPHROLOGY
EXOME	NEUROLOGY
HEMATOLOGY	OPHTHALMOLOGY
HEREDITARY CANCER	PEDIATRIC GENETICS
SCOR Life https://www.invitae.com/en/Access	sed 4/1/2019

HEREDITARY CANCER

GENES TESTED:

ALK	APC	ATM	AXIN2	BAP1	BARD1
BLM	BMPR1A	BRCA1	BRCA2	BRIP1	CASR
CDC73	CDH1	CDK4	CDKN1B	CDKN1C	CDKN2A
CEBPA	CHEK2	CTNNA1	DICER1	DIS3L2	EGFR
EPCAM	FH	FLCN	GATA2	GPC3	GREM1
HOXB13	HRAS	KIT	MAX	MEN1	MET
MITF	MLH1	MSH2	MSH3	MSH6	MUTYH
NBN	NF1	NF2	NTHL1	PALB2	PDGFRA
PHOX2B	PMS2	POLD1	POLE	POT1	PRKAR1A
PTCH1	PTEN	RAD50	RAD51C	RAD51D	RB1
RECQL4	RET	RUNX1	SDHA	SDHAF2	SDHB
SDHC	SDHD	SMAD4	SMARCA4	SMARCB1	SMARCE1
STK11	SUFU	TERC	TERT	TMEM127	TP53
TSC1	TSC2	VHL	WRN	WT1	

☑ INDIVIDUAL HEREDITARY CANCER CONDITIONS

Invitae Lynch Syndrome Panel

Genetic testing for 5 genes associated with Lynch syndrome. This condition increases the risk for colorectal, ovarian, and uterine cancer.

ΙΝΥΙΤΛΕ

5 genes

GENES TESTED:

Panel details and technical assay limitations

PATIENT PAY Genetic testing should be affordable and accessible to anyone who needs it. For panel and single-gene testing, Invitae offers a patient-pay price of \$250 per clinical area to make testing affordable for more patients, including those who do not meet coverage policies for testing, those with high-deductible plans, and those not covered by insurance.

INSURANCE AND INSTITUTIONAL BILLING The most we will ever bill an insurance company or institution is \$1500 per clinical area for a panel or singlegene test. (For exome prices, please see the Exome Testing section below). In many cases the amount will be lower due to contracts between Invitae and the insurance company or institution. Our mission is to bring genetic information into mainstream medical practice—and our success depends on this type of responsible billing practice.

DECISION POINT #1

Option 1:

There are some large research initiatives in the USA evaluating genetic diseases in the general public.

Option 2:

Cancer Specific Genetics.

Cancer involves mutations to our DNA?

- What is being tested?
- What are the early results?
- Hereditary
- Somatic (acquired)

Congratulations! You have chosen

OPTION 1

Evaluating the general public for genetic abnormalities. What are the early findings?

Geisinger integrated health system

- >3 million patients
- Located in Eastern Pennsylvania and Southern New Jersey
- Physician led health system
- Pennsylvania and New Jersey
- 13 hospital campuses, 2 research centers, 1 medical school
- 600,000 member health plan

Geisinger

Geisinger initiatives

- MyCode Community Health Initiative (as of 4/10/2019)
 - 227,000 volunteer participants
 - 59 genes tested
 - Anticipated 2-4% of patients would receive abnormal genetic test results
 - 1,048 patient-participants have received results from the testing
 - Eventually they anticipate having all 3 million patients in their system tested
 - 2,500 participants will have pharmacogenomic testing
- Detect Research Study

ite

Dynamics of Childhood Obesity study

MyCode: How does the program work? Geisinger

- Sign the consent form
- Donate blood
- Each sample is coded and stored for research
- About 2% of cases a genetic abnormality is found that is part of a higher risk genetic condition which can be treated or managed.
- In those cases the blood is analyzed in a certified clinical laboratory to confirm the finding.
- If abnormal patient and doctor are informed. Patient can speak to the doctor and the genetics team counselor.
- If pharmacogenomic testing shows a potential problem with the medications a pharmacist will notify the pt.

MyCode: Conditions prompting patient notification Geisinger 1068 patients as of 4/11/2019

Cardiovascula	ır	(Cance	r		Other	
Familial hyper- cholesterolemia	125	Hereditary breast and ovarian cancer BRCA 1 BRCA 2	290 102 188	Lynch Syndrome	101	Hereditary Hemochromat osis	203
Arrhythmogenic R Ventricular Cardiomyopathy	82	Hereditary pheochromocytoma s and paragangliomas	17	Multiple Endocrine Neoplasia type 1 and type 2	27	Malignant Hyperthermia	23
Cardiomyopathy	74	Li-Fraumeni Syndrome	9	Familial Adenomatous Polyposis	14	Marfan Syndrome	9
Inherited arrhythmias	65	PTEN Hamartoma Tumor Syndrome	5	Tuberous Sclerosis	4	Vascular Ehlers-Danlos	6
Familial Aortic Aneurysms and dissections	11					Fabry Disease	4
Catecholaminergic Polymorphic Ventricular TachycardiaNeurofibromatosis Type 2RetinoblastomaHereditary Hemorrhagic telangiectasiaJuvenile PolyposisVon Hippel-Landau				tasia			

DETECT Research Study: How does the program work? Geisinger

- Goal: Evaluate liquid biopsies
- Enrollees:
 - Women ages 65-75 with no prior cancer
 - 10,000 targeted (7,600 enrolled as of 1/2019)
- What is tested:
 - Circulating DNA
 - 15 genes
 - 10 protein markers
- Abnormal results are followed by PET-CT scans and further testing.
- Geisinger in cooperation with Johns Hopkins physicians
- This is the only large health plan involved in this study

Dynamics of Childhood Obesity in Pennsylvania From Community to Epigenetics Geisinger

- Observational Study
- Started in 2012
- Evaluate diet and exercise changes in DNA methylation
- 950 parent/child enrollees
- Monitor weight/height/DNA methylation via saliva over time.

Northshore University Health System (Chicago area) DNA10k initiative

- Enroll 10,000 patients in the study
- Evaluate for CAD, breast cancer and colorectal cancer
 - 30 genes involved in cancer
 - 30 genes involved in heart disease
 - 14 genes involved in medication response
- Announced the plan in 1/2019—starting enrollment in 4/2019

South Dakota based Sanford Health

Enrolled 2,000 patients since 2018
3% of those tests have found reportable abnormalities

Precision Medicine Initiative National Institutes of Health (NIH)

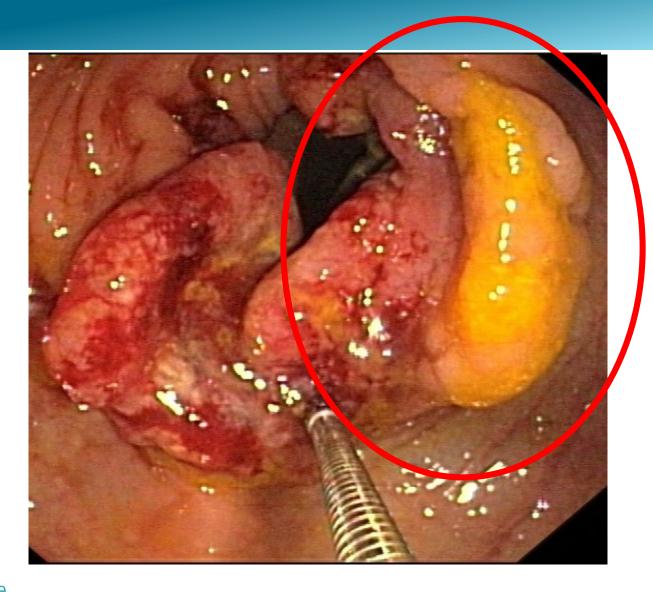
- Goal: Enroll 1 million + volunteers in the U.S. to contribute their health data over many years to improve health outcomes
- Enrollees:
 - Enrollment now open
 - Program started in 2016
 - >18 years of age
- What is tested:
 - Not focused on a specific disease
- Enrollees have access to their results and can share them with their own physician

Congratulations! You have chosen

OPTION 2 Cancer Specific Genetics.

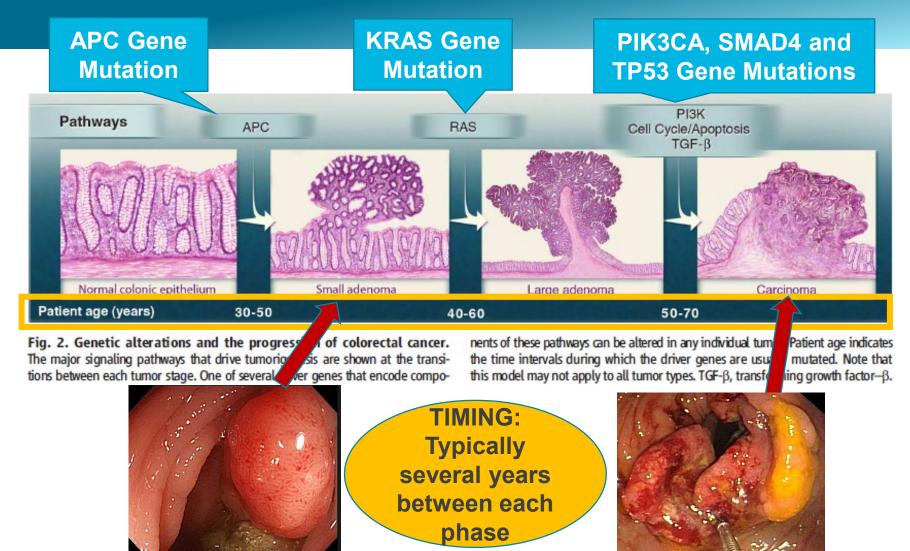
What is happening genetically in cancer?

Cancer and Genetics



Cancer and Genetics

How often is DNA altered (mutated) in cancer?	How many genes have mutations in a typical human cancer?				
The average solid tumor has 33-66 genes with mutations which alter protein.	95% of those are single-base substitutions. The remainder are deletions/insertions				
The number can vary:~9 in childhood malignancies~33 in breast cancer~66 in colon cancer~163 in lung cancer					


Cancer—Genetics—Example—Colon cancer

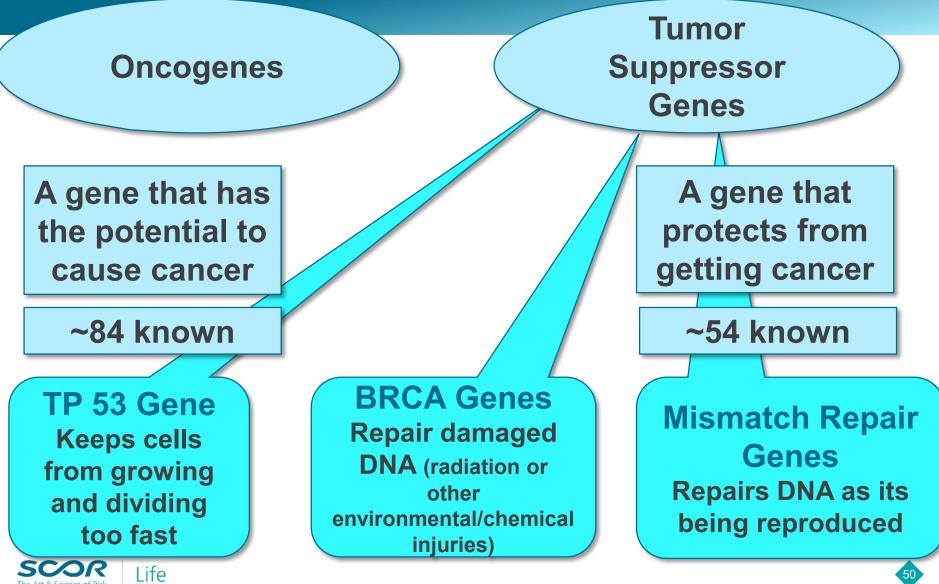
Cancer—Genetics—Example—Colon cancer

Cancer and Genetics

Germ line

Born with a genetic configuration which makes cancer development likely

Somatic (acquired)


Develop a genetic modification after birth which causes cancer

5-10% of all cancers
50 different hereditary cancer syndromes

• 90-95% of all cancers

Important Concept: Genes Involved in Cancer

DECISION POINT #2

Oh my, tough choices. I am glad I don't have to decide!!

Option 3:

The hereditary genetic test is positive (Lynch syndrome/BRCA)

 Does knowing the result impact mortality?

Option 4:

Liquid Biopsies What are they?

 Are we getting close to seeing results of liquid biopsies in the records?

You have chosen

OPTION 3

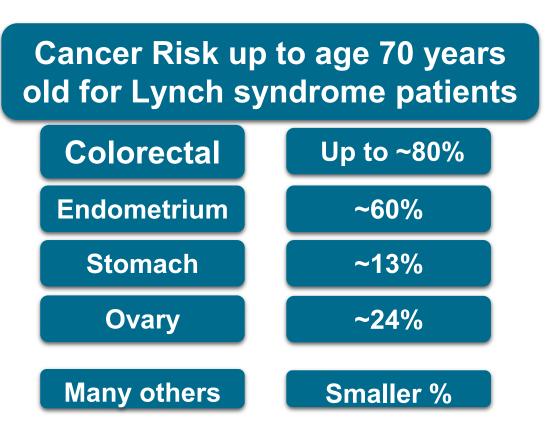
The hereditary genetic test is positive (Lynch syndrome/BRCA)

Does knowing the result impact mortality?

Cancer Risk Increases with Lynch Syndrome

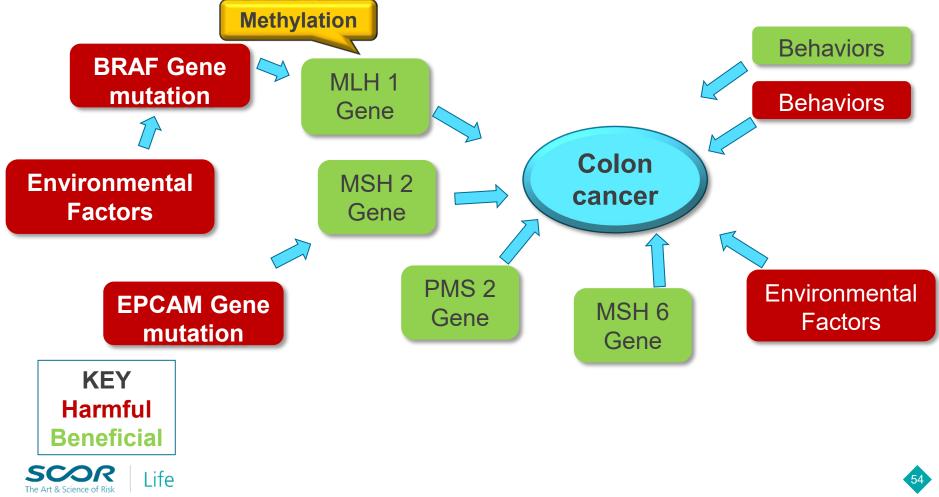
Is one of the most common cancer susceptibility syndromes.

~1:370 people have this disorder.


- Is a result of a germline mutation in one of the DNA mismatch repair genes
- Predisposes an impacted individual to a high incidence of cancer.

~1.2 % people with it know they have it

Life



Lynch Syndrome Cancer Genetics: It can be complicated

Diseases can be a combo of one or more genes, one or more behaviors, and one or more <u>environmental</u> factors, with both good and harmful effects.

Lynch Syndrome: Prevention/Screening Mortality Results

A 2013 article by H. Jarvinen et al documents that:

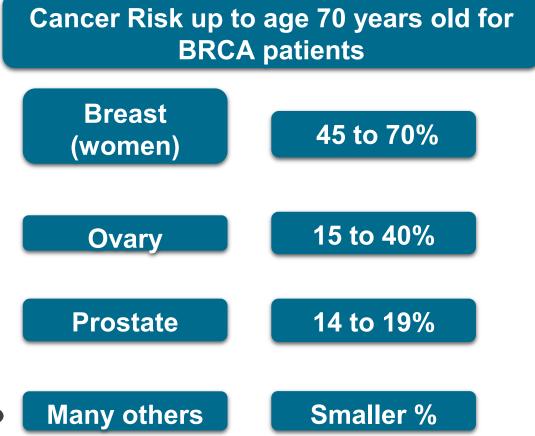
Colon cancer screening helps!

Impact

- Decreases incidence of invasive colon cancer by 62%
- Decreases mortality by 65%

Adherence

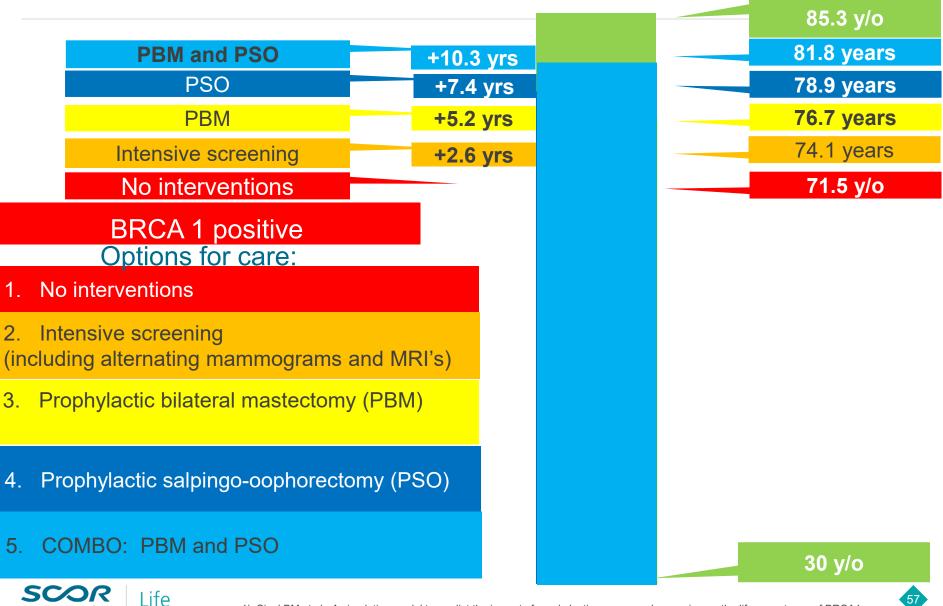
- Colonoscopy 80%
- Endometrial cancer surveillance 63%
- Hysterectomy and BSO choice 19%

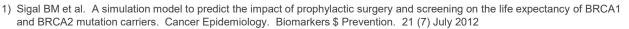


Cancer Risk Increases with BRCA 1 and 2 mutations

- BRCA genes code for proteins which repair damaged DNA
- Mutations in the BRCA gene predispose an individual to an increased risk of cancer
- Several interventions can improve mortality risk
 - Intensive screening
 - Hormonal medical therapy
 - Risk-reducing surgery

Can genetic testing lead to improved risk?





Life Expectancy of a 30 year old woman

Typical risk

Other conditions:

Hereditary Hemochromatosis

Malignant Hyperthermia

Early dx and great treatment compliance can led to mortality risk similar to that of the unaffected

All the other diseases listed in the American College of Medical Genetics and Genomics have treatments/strategies thought to favorably impact mortality

You have chosen

OPTION 4 Liquid Biopsies What are they?

• Are we getting close to seeing results of liquid biopsies in the records?

Able to find small amounts of DNA, RNA, and proteins in the circulating blood that can indicate disease

Sudden Unexplained Death

Molecular Analysis of DNA for heritable heart disorders (NY—Erdman, 2013)

Evaluating the unborn baby

cffDNA—cell free fetal DNA (Bianchi)

Evaluating cancer (detect, track treatment, check for recurrence)

ctDNA—circulating tumor

Liquid Biopsies 2017 study Sudden arrhythmic death syndrome (SADS)

SADS definition:

Sudden death with negative autopsy and toxicological analysis

302 validated SADS cases

Median age: 24 years Males: 65%

Test: 77 electrical and cardiomyopathy genes using American College of Medical Genetics guidelines

Results: Pathogenic or "likely pathogenic" variant found in 40 cases (13%)

Liquid Biopsies---ctDNA

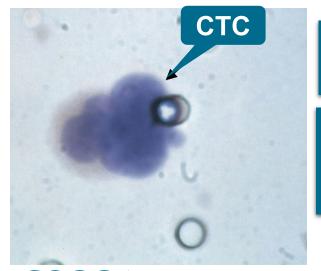
Science (Jan 18, 2018)

A blood test (CancerSEEK) which detects 8 common cancers described.

Ovary	Esophagus
Liver	Colon
Stomach	Lung
Pancreas	Breast

DNA analysis and protein analysis.

Test detected cancer 70% of the time Sensitivity: ranged from 69% to 98% for 5 cancer types with no screening tests currently available Specificity: 99% (7 out of 812 healthy controls scored positive)



Example of studies on liquid biopsies and future use

December 2018

Researchers from MD Anderson/Northwestern/Other make the following points:

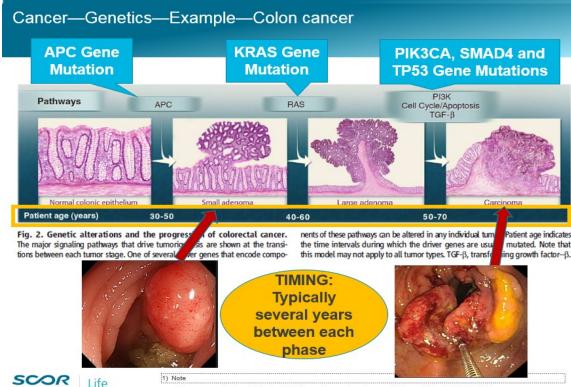
- Metastatic breast cancer (MBC) prognosis varies by presence/amount of circulating tumor cells (CTCs)
- CTC counts might be important for treatment decisions.
 Future clinical trials needed.

ife

2,436 patients

Threshold < or > 5 CTC's per 7.5 ml

Those with <5 CTC's had much better survival regardless of cancer characteristics (HER/ER status)



2) https://commons.wikimedia.org/wiki/File:Figure 1, Picture of a circulating tumor cell, arrow, diagnosed by the ISET test.jp g Image obtained using Google's "labeled for reuse with modification" search engine

Testing for cancer---things might be chan

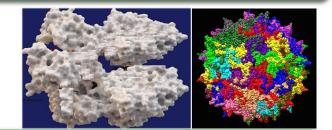
Testing for cancer in the future might include:

- More use of presymptomatic predictive testing
- Cancer mutation testing
 - Hereditary cancer syndrome
 - Somatic mutations

Remember this slide

Figure as used in Vogelstein, Bert et al Cancer Genome Landscapes. Science. 29 March 2013 Vol 339

DECISION POINT #3


Option 5:

The PI obtained a genetic test. How accurate is it?

> When a test is reported to be negative is it negative?

Option 6:

Gene Editing:

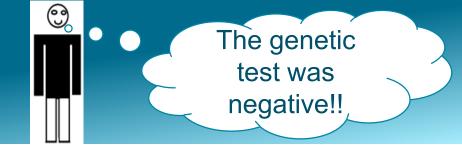
CRISPR and adenoassociated virus

You have chosen Option 5

The patient obtained a genetic test. How accurate is it?

When a test is reported to be negative is it negative?

Genetic Testing: Characteristics of a good test



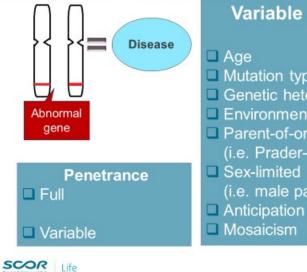
C o	Genetic testing	
100 % Sensitive	100% Specific	Varies
Inexpensive	No	
Accurate and reproc	Typically	
Ordering person has	Varies	
Tested individual ca	Varies	
Established testing protocol/process with little modification or Not typically changes anticipated		
Abnormalities point	Not typically	
Always actionable	No	
Always one test for each disorder No		
	No	

Genetic Test Results

Category		Characteristics		
Pathoge	enic	Variant previously associated as cause of the disorder		
Likely Path	ogenic	Variant expected to cause the disorder		
Variants of uncertain significance		Variant that might be causative		
Likely benign		Variant probably not causative		
Benign		Variant recognized as neutral		
It is not uncommon for sequence variations to move from one category to another over time				

Genetic Testing: Characteristics of a good test

Some important questions: 1.How long ago was the test done? 2.Is there a known mutation in the family? 3.Do we have the test report or is it a verbal result? If verbal, did the patient get pre and post test genetic counseling? 4.Is this a diagnostic test or a pre-symptomatic test?



Genetic Testing: **Remember these slides?**

A positive test doesn't mean the person will get the disorder

Important Concept:

"Multiple variables influence the impact of genetic expression"

Variable expressivity

- Mutation type
- Genetic heterogeneity
- Environmental exposure
- Parent-of-origin effects (i.e. Prader-Willi Syndrome)
- Sex-limited expression
 - (i.e. male pattern baldness)

Knowing exactly what test was done is important

Important Concept: "There are many genetic testing techniques"

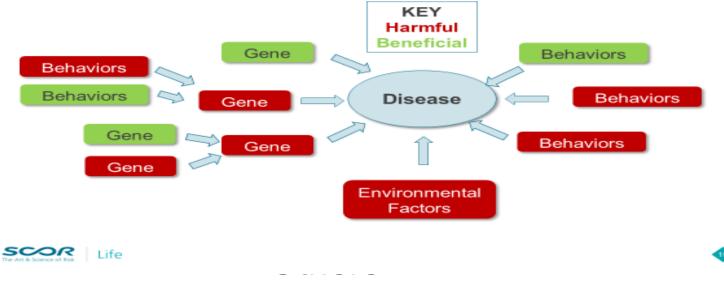
Biochemical testing

· Protein analysis/Enzyme assays/Analytes

DNA analysis

- Real-time PCR Small number of genes tested
- High-density DNA array testing Analyze for 1,000,000 gene variants
- Highly efficient DNA sequencing techniques (next generation sequencing) Entire human genome

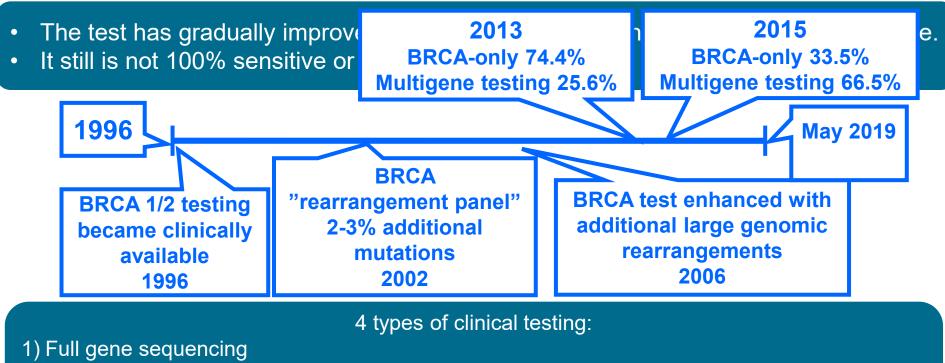
SCOR Life


Remember this slide?

For many diseases there are multiple genes and environmental factors involved. Are all of these known?

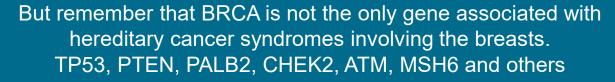
Concept

"Interaction of Many Factors"


Diseases can be a combo of one or more genes, one or more behaviors, and one or more environmental factors, with both good and harmful effects.

Testing: One important question is "How long ago was the test completed?"

Example: BRCA



- 2) Panel for the founder mutations common in Ashkenazi Jewish populations
- 3) Mutation specific assay

_ife

4) Large genomic re-arrangement testing

1) Breastcancer.org

Testing: Another question is "Are most genetic mutations involving the disease in question known?"

In Hypertrophic Cardiomyopathy for instance only about 50% of the time can a specific mutation be found in an impacted individual

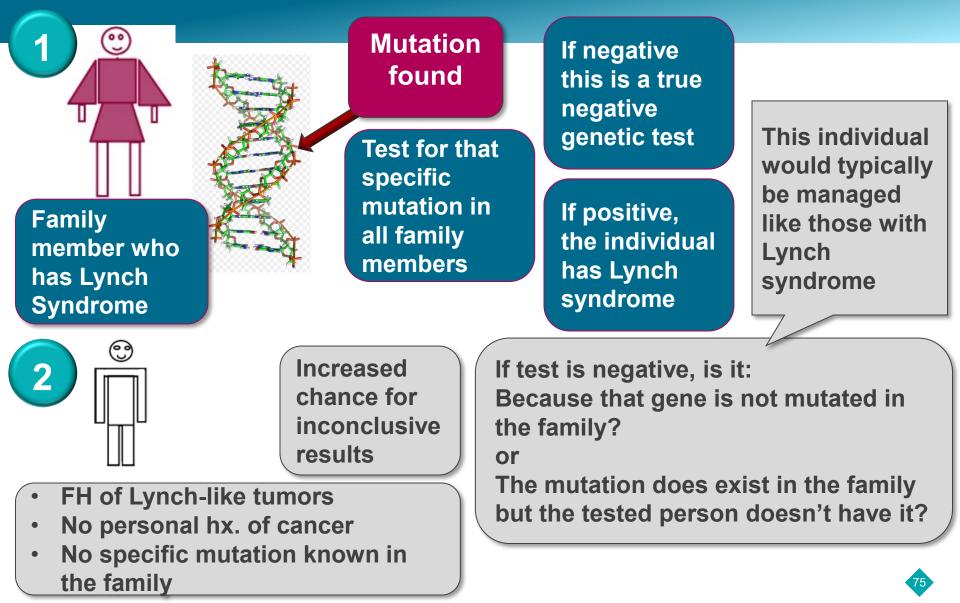
Testing: Another question to consider "Is the disease mostly genetically influenced?"

Huntington's Disease is always associated with a genetic abnormality. This is not true for many other diseases.

Huntington's Disease involves only 1 gene. The genetic test is close to 100% sensitive and specific

Huntington's Disease involves only inheriting 1 copy of the abnormal gene

Huntington's Disease always develops when the gene is mutated


There is no effective treatment or cure for Huntington's disease.

Only about 15% of people take the reliable test (available since 1993) when the disease is present in a parent. This compares to 60% of people given the choice of BRCA testing

Genetic Testing—Scenarios 1 and 2

You have chosen

11 3

OPTION 6: Gene Editing:

Error detected

CRISPR and adeno-associated virus

Exciting New Technologies Gene Therapy/Editing

Gene editing involves modifying the genetic sequence of DNA

2576 studies were identified using "Gene Modification" in the search engine of the ClinicalTrials.gov site

Gene Therapy/Editing with use of viral vectors

Viral vector characteristics

- Able to attach to and enter the target cell
- Successful transfer to the nucleus
- Lack of toxicity

Advantages of the virus

- Reliably (~100%) inserts genetic material into Chromosome 19 at a specific site
- Is non-pathogenic
- Requires a single injection

Viral vectors:

Retroviruses

- Lentiviral viruses
- Foamy viruses
- Adeno-Associated virus

Disadvantages of the virus

- Carries only a small amount of genetic material
- Difficult to produce
- Expensive to produce

Gene Therapy/Editing

11 12 13 XX 14 15 21 22 XY 20 mt The human genome is DNA ized as 23 chromosomes including 22 autosomes (named 1-22), ar e sex chromosome (either X or Y). natic cell consisting of two sets of 23 Humans are diploid, with each rited (blue) and one maternally inherited chromosomes, one paternally (pink). The Y chromosome is ssarily paternally inherited. The mitochondrial genome (mt) is red solely from mitochondria in the ova and therefore exhibits exclusi atrilineal inheritance. Re **UpToDate**[®] Adeno-**DNA** associated virus The virus inserts genetic material at a specific site on Chromosome 19 Human Cell

Autosomes, sex-chromosomes, mitochondrial genomes

SCOR Life

Gene Therapy/Editing

Hemophilia A – Factor VIII clotting factor gene80% of casesHemophilia B- Factor IX clotting factor gene20% of cases

Adeno-associated virus (AAV)

10 men injected with:

- AAV with a bioengineered capsid
- Liver-specific promotor

Hemophilia B treatment

Factor IX Padua transgene

Followed for 28-78 weeks

- Bleeding rate decreased from 11.1 events/year to 0.4 events/year
- 8/10 able to stop factor injections
- No significant side effects

l ife

Gene Therapy/Editing

The first FDA approved gene therapy for a genetic disease (not cancer).

• Hereditary Retinal Dystrophies:

- Group of genetic retina disorders—Mutation in one of ~220 genes.
- Biallelic RPE65 mutation is one of these
- ~1,000 to 2,000 patients in the USA
- Luxturna was FDA approved in Dec, 2017
 - A normal copy of the RPE65 gene is injected into the eye.
 - Adeno-associated virus (AAV) used.
 - 150 billion viral vector particles carrying the normal gene injected.

93% of patients had improved vision

Price tag reported to be ~\$850K

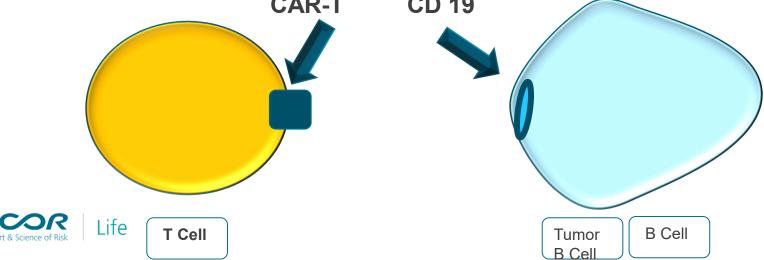
Gene Therapy/Editing—CAR-T

2 medications were FDA approved in 2017

Dramatic results in 3 recent studies!

1) 57% complete response in 28 patients with refractory B-cell lymphomas

2) 54% complete response in 101 patients with refractory large B-cell lymphomas


2) 90% complete remission in 30 children with refractory acute lymphoblastic leukemia (ALL)

- Serious side effects and death have been associated with the tx.
 - Cytokine release syndrome occurs frequently (~50-90% of the time)
 - Fever, hypoxia, hypotension

Gene Therapy/Editing—CAR-T

- Killer T cells are part of the immune system
 - They seek out and destroy invading antigens.
 - They are very specialized and have specific targets
- **T cells removed from a cancer patient** (B-cell acute lymphoblastic leukemia and non-Hodgkin lymphoma).
- Genetically engineer a specific T-cell receptor (Chimeric T cell antigen receptor (CAR-T) that interacts with the cancer
 - These cells are synthetic molecules—they don't exist naturally
- Administer these cells to the cancer patient—the cells further multiply in the patient's body
- The CAR-T targets a protein called CD19 that is common on B cells CAR-T CD 19

Gene Therapy/Editing—Sickle Cell Treatment

That is a lot of breaking news!!!

EVEN MORE BREAKING NEWS!!!! March, 2017 Development

French investigators published in the NEJM the results of a cure for sickle-cell disease in a young boy

- Stem cells were removed from the bone marrow
- The stem cells were genetically edited to remove the single genetic mutation that causes sickle cell disease
- The stem cells were then infused back
- 2 years later the patient has enough normal RBC's to avoid the side effects of the disorder

Current and Future Developments CRISPR----Headlines

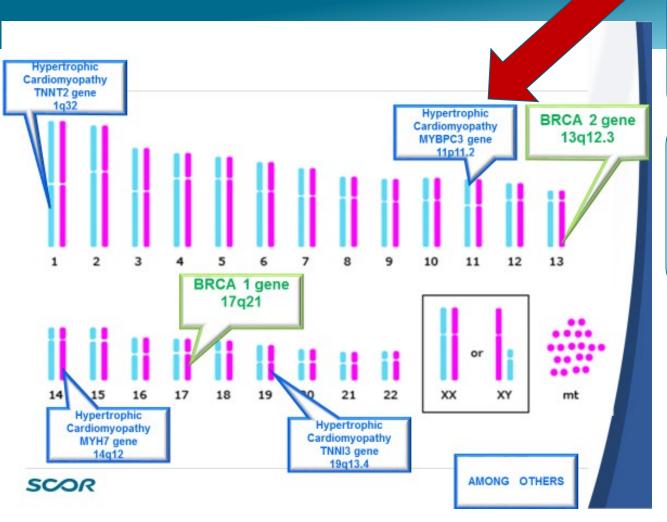
BREAKING NEWS!!!! August 2017 Development

Human embryo genes edited at the University of Oregon

CRISPR-cas technology was used to alter the MYBPC3 mutation involved with hypertrophic cardiomyopathy.

CRISPR-Cas was Science as 2015 "Breakthrough of the Year"

Pictured: Individual blastomeres within early embryos two days after introducing the CRISPR gene editing system. A new study revealed that each new cell in the developing embryos was uniformly free of a disease-causing mutation. *Credit: OHSU*

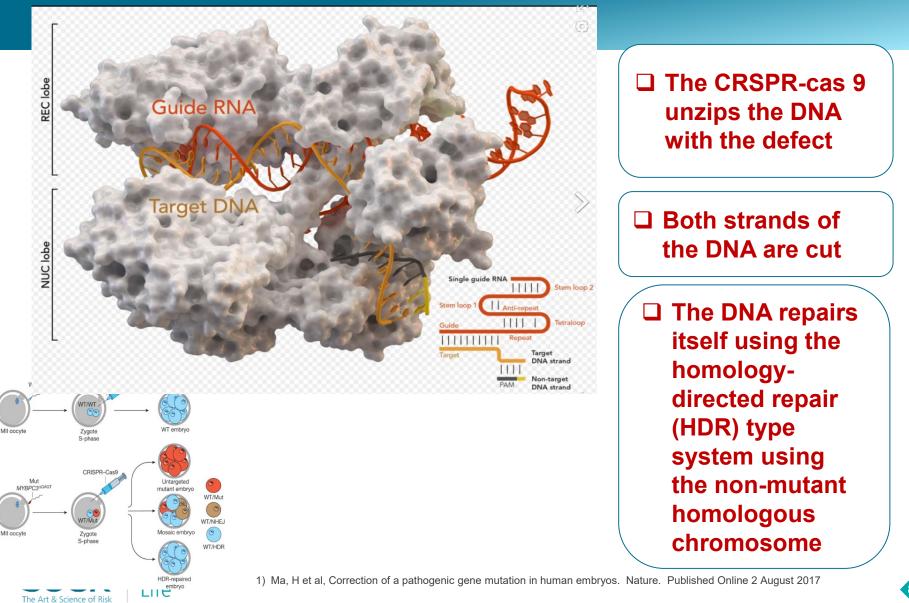


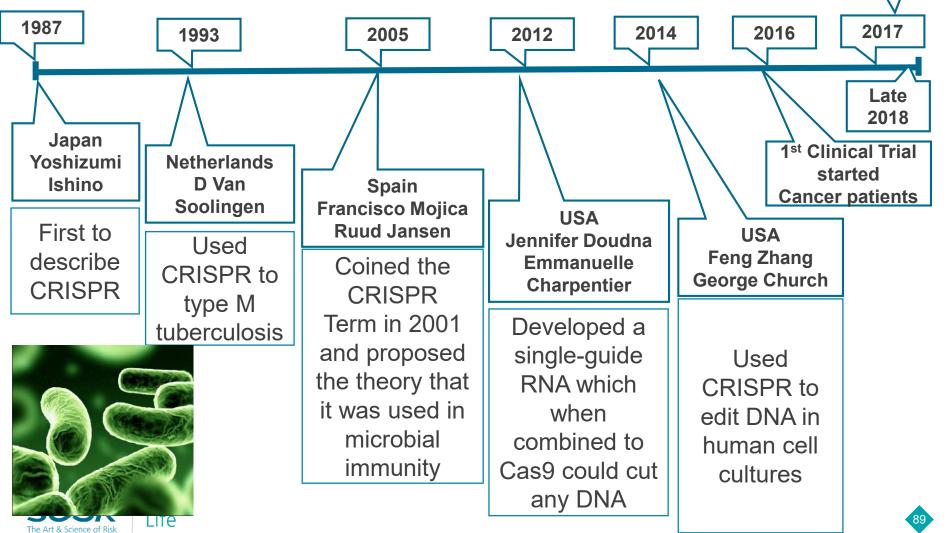
https://www.scientificamerican.com/article/embryo-gene-editing-experiment-reignites-ethical-debate/ Last accessed 8/2/2017

CRSPR-cas and HCM gene editing

 Accounts for 40% of all known HCM genetic defects

Study took a male with a known 4 bp GAGT deletion in exon 16


CRSPR-cas 9 functions much like scissors

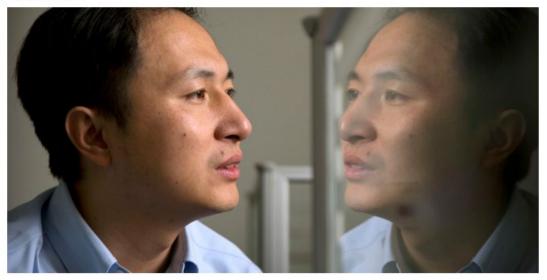


CRSPR-cas and HCM gene editing

The story of **CRISPR** Clustered Regularly Interspaced Short Palindromic Repeats

Modified a human embryo

RACECAR


MADAM

Current and Future Developments CRISPR----Headlines

BREAKING NEWS!!!! November 2018

Chinese researcher claims first gene-edited babies

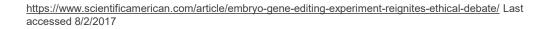
Chinese researcher, He Jiankui Ph.D. of Shenzhen

Twin girls born! Lulu and Nana

DNA altered by CRSPR technology.

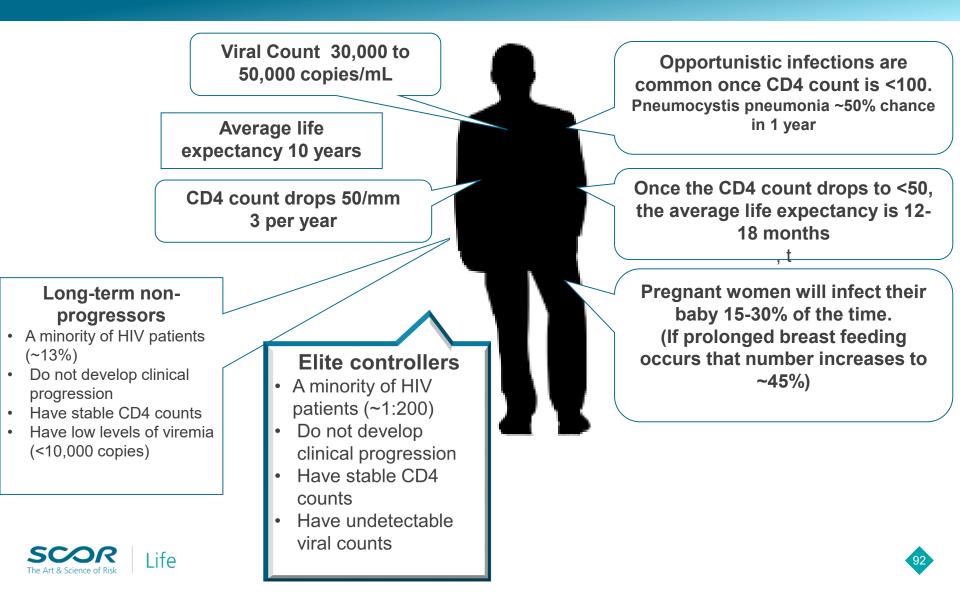
Gene editing done to prevent HIV acquisition

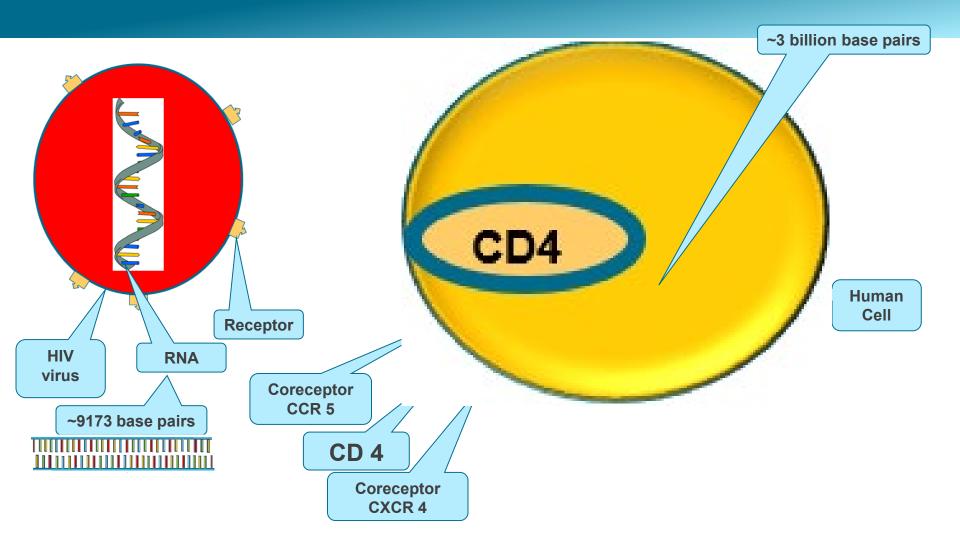
Current and Future Developments January 2019



The NEW ENGLAND JOURNAL of MEDICINE

After the Storm — A Responsible Path for Genome Editing


George Q. Daley, M.D., Ph.D., Robin Lovell-Badge, Ph.D., and Julie Steffann, M.D., Ph.D.



Natural history of HIV infection prior to ART

HIV--Invasion of the T Helper Cell

HIV and the Berlin Patient

Time For a Story

Timothy Ray Brown

Dr. Gero Hutter

https://62e528761d0685343e1cf3d1b99a743ffa4142d9d7f1978d9686.ssl.cf2.rackcdn.com/files/67161/area14mp/image-20141214-6027-1q4lt20.jpg Accessed with Bing's "free to share and use commercially" search engine. Last accessed 5/21/2018

http://www.cureaidsreport.org/interviews-q/#PrettyPhoto[426]/0/ Accessed 5/21/2018

Current work to develop a future "cure"

The Story Continues

Chemo was given but 7 months later the leukemia relapsed.

Mr Brown needed an allogenic stem cell transplantation

Although Dr. Hutter had never treated an HIV patient before he wondered if he might be able to cure the HIV. Dr. Hutter searched for and then performed a transplantation from a donor who was homozygous for the CCR5 mutation.

Mr. Brown required a second transplant after another relapse.

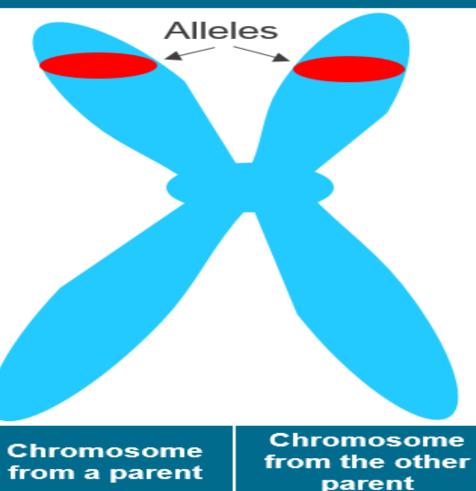
He suffered from graft versus host disease

Once recovering from this second transplant he is now AML free.

Amazingly he also became the first person to be cured from HIV

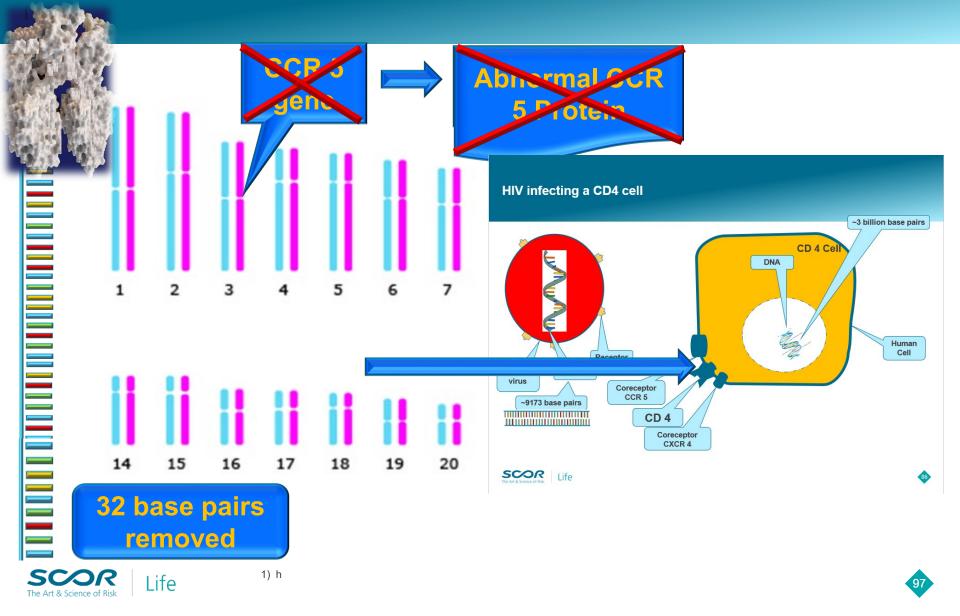
The Berlin Patient

Chromosome 3

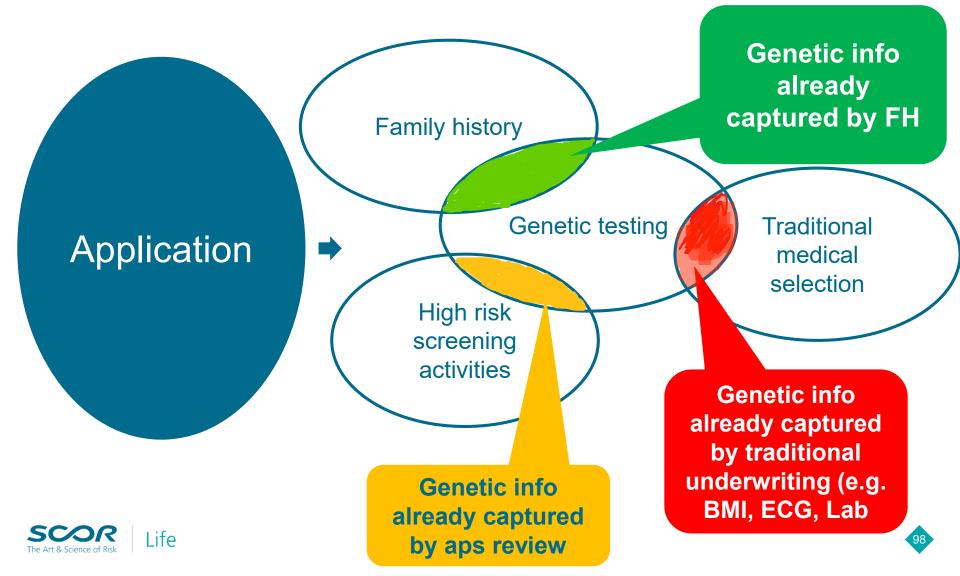

The protein in the CCR5 receptor is made from a gene in chromosome 3.

Some people have a deletion of 32 bp in the gene which makes the CCR5 protein receptor.

Without this functional receptor, the HIV virus has a harder time getting into the cell.

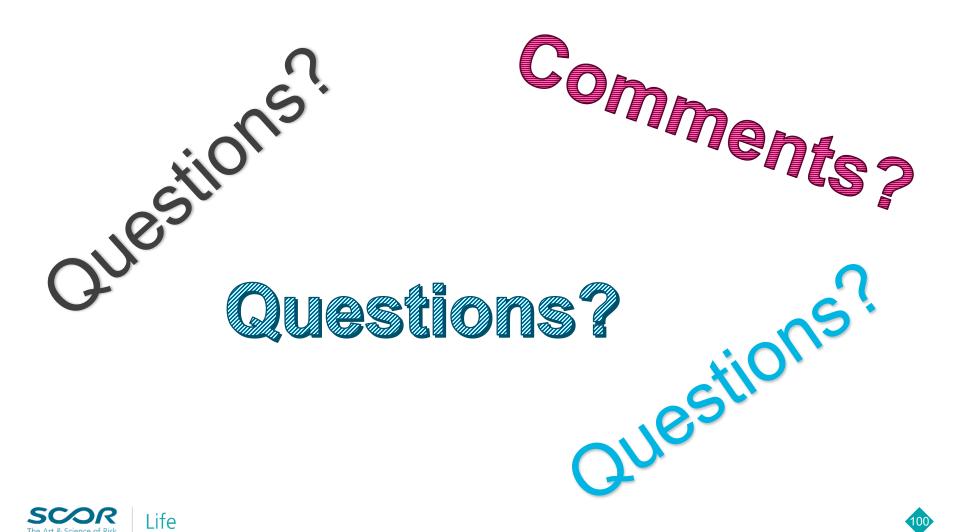

When the mutation involves one allele, it slows HIV progression.

When the mutation involves <u>both</u> alleles, it can prevent HIV disease or disease progression.



CRSPR-cas and HIV prevention gene editing

Final thoughts regarding underwriting those with genetic testing



In Summary

The Art & Science of Risk

<text></text>	DNA	RNA	Protein
bs bs bs bs bs bs bs bs bs bs	 genetic testing Increased pre- symptomatic genetic testing Improved 	increase in diagnostic and treatment	
	Eterritoritie ed	Nucleo Bas Magada Magada Magada Magada Magada	Pinary Protein Structure is sequence of a chain of animo acids from Acids

Questions or Comments?

